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Summary. Significant genotype-environment interac- 
tions in an ANOVA can be found for a number of  
reasons: one is the differences in the among-environ- 
ments variances for each genotype, another is the dif- 
ferences in the ordering of the environments by each 
genotype. Using conditional clustering, groups may be 
formed in which the means, variances and patterns are 
used simultaneously but separately to decide on group 
homogeneity. 
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In troduct ion  

According to Lin (1982), two aspects of the data 
structure in the context of genotype (G) by environ- 
ment (E) experimentation are of  special importance, 
namely, the 'level' aspect, represented by the marginal 
means, and the 'shape' aspect, represented by the 
differential responses of  individuals to one factor at 
different levels of  the other. He, and others (see 
references cited by Lin) argue that the genotypes (or 
environments) should be grouped so that there will be 
no significant GE interaction within groups. Rarely, 
however, are the reasons for the presence of such an 
interaction considered, which can include the range of 
values which different genotypes may show among 
environments, and, quite separately, the pattern of  
highs and lows which they may show even if the ranges 
are the same. This distinction can be illustrated by 
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reference to Table 1, in which the (hypothetical) mean 
yields of  a replicated trial are given for four varieties 
grown in five locations. Considering all five locations, if  
only varieties I and IV had been grown, an ANOVA 
would not suggest a significant interaction, but would 
do so for each of  the other pairs. For (I, II) the 
interaction can be explained by the different among- 
locations variances for them, for (I, III) by the different 
ordering of the locations with respect to the mean 
yields, while for (II, III) it is by both reasons. 

The purpose of this paper is to draw attention to the 
fact that the among-environments variance for each 
genotype conveys information relevant to their group- 
ing which is separate from the pattern of  highs and 
lows, and also that clustering is possible in which there 
are several independent measures of  relationship with- 
out the need to combine the latter. Other pertinent 
literature on the problems of grouping in the present 
context is cited by Lin (1982) and does not need to be 
reviewed again. 

Table 1. Hypothetical mean yields of four varieties grown in 
five locations 

Varieties Loacations Mean Among- 
locations 

a b c d e variance 

I l 3 5 7 9 5 10 
II 3 4 5 6 7 5 2�89 
III 9 5 1 7 3 5 10 
IV 11 13 15 17 19 15 10 

Mean 6 6�88 6�89 9�88 9�89 " 7�89 
2 11 2 11 I 

Among- 227 20/~ 35-~ 2612 46~ 26.58 
varieties 
variance 
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Method 

Let Xik be the observed mean response of the ith genotype in 
the kth environment,  and mi and s~ the mean response and 
among-environments variance respectively (the m i and s~ need 
not be related). If  the mi are equal in a probabilistic sense, or 
fall into a number  of subsets in which they are equal, it seems 
reasonable further to group the genotypes belonging to each 
of these subsets on the s~, since, for example, the yield of the 
varieties belonging to a subset having the smallest among- 
locations variance tends to be independent  of the differences 
in the locations. Assume for the moment  that the genotypes 
have been grouped into subsets for which the means and 
among-environments  variances are homogeneous; if each such 
group contains more than one genotype, and exhibits a sig- 
nificant GE interaction, this can only be due to "shape". Thus 
the problem is to determine if  interesting subsets of genotypes 
exist in groups exhibiting a GE interaction for which it is 
assumed that all have identical means and among-environ- 
ments variances. 

With the assumptions just  made, all that remains is the 
pattern of the responses across the environments,  which being 
multivariate, does not lead to an ordering or even a partial 
ordering. The motivation for what follows is that if these 
patterns are the same for some subset of the genotypes of 
interest, then it is reasonable to assume that those genotypes 
showing this pattern are equivalent, and given that there is no 
other relevant (external) factor, any member  of a subset can 
be used for any other. Thus the problem becomes that of 
finding subsets of the genotypes for which the patterns within 
a subset are very much more alike each other than they are to 
the patterns shown by the members of any other subset. The 
first problem, therefore, is to describe the difference in the 
patterns in some way which is independent  of the mi and s~. 

Since the mi are assumed to be (probabilistically) identical 
and to have a common s~, the Xik are first translated so that the 
variety mean  becomes zero, and then normalized to have unit 
variance; this is achieved ifxik is replaced by vik defined as 

Vik=(Xik-mi)/  II Xik- mill. 

If vi denotes the vector {Vik}, the Euclidean distance between 
vi and vj, denoted by dij is given by 

d ~.i = ( v i -  vj)'(v i -  vj) 
= 2 (1 - v'iv~i) 
= 2  (1 - c o s  0ij) 

where 0ij is the angle between the vectors vi and vj. It can be 
seen that dij is the linear distance between the ends of unit 
vectors, which, together with 0ij, is independent  not only of 
the means but also of the among-environments variance. 
Furthermore, even if the genotypes truly have unequal  vari- 
ances and /o r  means, these values focus just  on the patterns, 
and exclude components arising from the means and vari- 
ances. If the squared distance among genotypes had been 
computed without normalization to unit variance, the value 
obtained can be written z 2 as si-b sj-si~j  cos 0ij which is twice the 
value obtained by Lin (1982). This value has the form of  the 
variance of  a difference, with expectation twice the error 
variance when the null model for GE interaction is true. 

In essence, therefore, the complete grouping procedure 
uses three criteria: (1) the formation of subsets of genotypes in 
each of which the means are not significantly different; (2) for 
each of the subsets satisfying the first criterion, further division 
into subsets in each of which the among-environments vari- 
ances are homogeneous; and (3) for each subset satisfying the 
first two criteria, further division into subsets in each of which 

the pattern of highs and lows are the same. As will be shown 
below, however, these three criteria do not require three 
distinct clustering steps. 

The assumption that the variability of each genotype at 
each environment is independent  of the mean, Xik (this vari- 
ability is not available for the data of Table 2) does not imply 
that the s~ and mi are independent.  If  they are related, then 
using the means independently from the among-environments 
variance as if these two components are independent  may be 
misleading. These measures can be combined for simultaneous 
use in a clustering context by replacing them by the Frrchet  
distance (Dowson and Landau 1982), dij defined as 

6~j= (mi mj)2 + ( s i -  sj) 2 

which will be zero if and only if the genotypes have identical 
means and variances. Using the Frrchet distances in a clus- 
tering context will then form groups which will be alike with 
respect both to the means and the among-environments 
variances. 

At this stage, therefore, the data have been replaced either 
by three sets of values, namely, the means, variances and 
pattern distances, or by two sets, namely, the Frrchet  and 
pattern distances. These are independent  of each other, and at 
least one set is not uni-dimensional; thus it becomes necessary 
to employ a clustering procedure if groups are to be formed 
empirically. While each measure of distance may be processed 
by any greedy-type algorithm, such as employed by Lin 
(1982), the objective is really to form groups which are afike 
simultaneously on all sets of distances. One possibility for this 
is to find some compromise measure of distance (Lefkovitch 
1978), but this has its own problems, and then employ the 
hierarchical clustering algorithm used by Lin, described origi- 
nally by Sokal and Michener (1958), or replacing it by some 
other such procedure which is computationally faster and 
which exhibits fewer pathologies (Fisher and Van Ness 1971). 
Unfortunately, hierarchical procedures do not lend themselves 
to simultaneous clustering on several criteria in a simple and 
natural manner,  and so it is of value to consider a clustering 
method which can use more than one set of distances. One 
such procedure, conditional clustering (Lefkovitch 1980, 1982), 
which produces subsets directly (and not dendrograms), re- 
expressed for the present circumstances, is: 

f o r i = 2 . . . n  
for j =  1 . . . i - 1  

g roup= {object i, object j} ; 
if the group is acceptable then 
label: for k =  1 . . .  n, consult the 'oracle' to decide 

whether k should be a member  or not; 
end k; 

if the group has been changed on the last pass 
through the for k loop, go to label; 

store the group for later processing; 
end j; 

end i; 

The generated groups are then examined in a number  of  ways; 
for example, if one of the groups consists of all genotypes, it 
can be discarded. From these considerations, it follows that 
there is no point in considering as an initial pair those objects 
which are least alike on any of the criteria, since a final group 
containing them will contain all n objects. It can be shown 
that the only initial pairs of objects which need be considered 
are those which are adjacent on the relative neighbourhood 
graph (Toussaint 1980) for each measure of distance under  
consideration. Details on the criteria for the 'oracle' are given 
by Lefkovitch (1982); essentially, it makes decisions based on 



a comparison between the maximum distance amongst the 
current members with the average distance a candidate has to 
members of the group (note that measures of pairwise distance 
for which there is a theoretical upper bound of z are to be 
replaced by -log (z - dij)). Thus the oracle decides that object 
k should be adjoined to the group if it is sufficiently alike the 
current members on all criteria (n.b. this may also include the 
among-years variance). The procedures for obtaining the 
maximal joint probability solution from the generated subsets 
are essentially that of least-cost set covering applied to the 
minimum cross-entropy probabilities of each subset, and are 
described by Lefkovitch (1982). 

There is no difficulty in extending conditional clustering to 
achieve groups homogeneous simultaneously for both geno- 
types and environments. For the moment, consider environ- 
ments for which it is not possible to specify their mutual 
geographical proximities; then using the environments as the 
objects of the basic alogirthm, the oracle decides membership 
of an environment group on the basis of come set of distances 
(e.g. the mean yield at the environment, the among-genotypes 
variances, the pattern of genotypes at an environment) based 
on all or on a subset of the genotypes. If the mutual proximity 
of the environments is known, and can be represented by a 
Gabriel graph (Toussaint 1980), then it is not necessary to 
consider all others as possible candidates, since the initial pairs 
can be confined to those environments which are adjacent on 
this graph, and candidates for admission can be confined to 
those which form a connected subgraph with the current 
members (Lefkovitch 1980). 

D i s c u s s i o n  

This paper has distinguished three components  of the 
responses of a genotype to a range of environments  
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which are of interest, namely, the genotype mean  
ignoring environments,  the among environments  
variance, and the pattern of responses among the 
environments,  and has described a clustering procedure 
in which these can be used simultaneously without the 
need to combine them. Furthermore,  the incorporat ion 
of year-to-year variability does not  require anything 
new other than to include an appropriate measure of 
this as part of  the decision process performed by the 
'oracle' in the algorithm. This variability can also be 
included in the Fr tchet  distances; if  y] represents 
the among-years variance for the ith genotype, then 

~ j  = ( m i -  mj) z + ( s i -  sj) 2 -1- (Yi - yj)Z 

is also a Fr tchet  distance; the definition can be 
extended by the inclusion of further terms in com- 
parable units. Furthermore,  the definition of the pat- 
tern vectors can also be extended to include further 
elements to represent the addit ional  data. 

The conditional clustering algorithm can also be 
used for the grouping of any sets of objects based on 
more than one set of  relationships e.g. a grouping of the 
environments.  A procedure for grouping genotypes and 
environments simultaneously is also possible; that sug- 
gested above, which can be regarded as a marriage 
between the two-way alternating strategy of Hartigan 
(1972) with that of  condit ional  clustering, is obvious 
and does not require further comment.  

Table 2. Variety means (based on three replications and two years data) cited from Yates and 
Cochran (1938) 

Variety Locations Mean Variance 

1 2 3 4 5 6 

'Manchuria' 161.7 247.0 185.4 218 .7  165.3  154.6 188.8 1,349.82 
'Svansota' 187.7 257.5 182.4 183.3 138.9  143.8 182.3 1,810.20 
'Velvet' 200.1 262.9 194.9 220 .2  165.8 146.3 198.4 1,685.55 
'Trebi' 196.9 339.2 271.2 266.3  151 .2  193.6 236.4 4,664.80 
'Peatland' 182.5 253.8 219.2 200.5  184 .4  190.1 205.1 751.18 

Mean 185.8 272.1 210 .6  217.8  161.1 165.7 212.1 
Variance 230.8 1,441.3 1,335.8 962.1 293.4 588.2 1,689.98 

Table 3. Pattern vectors for the varieties in Table 2 

Locations 

1 2 3 4 5 6 

'Manchuria' (1) -0.3299 0.7084 -0.0414 0.3640 -0.2861 -0.4163 
'Svansota' (2) 0.0568 0.7904 0.0011 0.0105 -0.4562 -0.4046 
'Velvet' (3) 0.0185 0.7025 -0.0425 0.2374 -0.3550 -0.5674 
'Trebi' (4) -0.2586 0.6731 0.2279 0.1958 -0.5579 -0.2802 
'Peatland' (5) -0.3688 0.7946 0.2301 -0.0751 -0.3378 -0.2448 
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Numerical  example 

To illustrate the arguments just presented, the data 
used by Lin (1982) will be reconsidered the data are 
given in Table 2, together with the means and among- 
locations variances. The pattern vectors are given in 
Table 3, the squared distances and angles in Table 4, 
Lin's estimated squared distances (which equate the 
means but which have not been based on equal among- 
locations variances) in Table 5, and the squared Frtchet  
distances in Table 6. The differences are striking; while 
the largest distance in Table 5 is between 'Trebi'  and 
'Peatland',  it is ranked fifth (out o f  10) in Table 4. Con- 
sidering just the variety means and variances, those for 
'Trebi'  and 'Peatland'  suggest that they are somewhat 
different from each other and from the other three 
without any consideration whatsoever o f  the pattern of  
responses across locations, which is essentially the 
grouping obtained by Lin. 

This grouping is confirmed by an examination of  
the Fr tchet  squared distances, in which it is apparent 
that 'Trebi'  is unlike the other four, and also that 
'Peatland'  is also somewhat different from the others, 
al though less so. It is also apparent  from Table 4 that 
grouping on pattern alone would give a different 
arrangement of  the varieties. This difference is con- 

Table 4. Squared distances among the varieties based on the 
pattern vectors (below diagonal) and angles in radians among 
them (above diagonal) 

(1) - 0.5663 0.4048 0.4506 0.5618 
(2) 0.3122 - 0.3164 0 .4785  0.5361 
(3) 0.1632 0.0993 - 0.5317 0.6719 
(4) 0.1996 0.2247 0.2761 - 0.3897 
(5) 0.3074 0.2806 0.4348 0.1500 - 

Table 5. Squared distance equating means but without equat- 
ing among-locations variances (from Lin 1982) 

(1) 
(2) 260.7 - 
(3) 133.8 88.5 - 
(4) 748.3 658.3 755.0 
(5) 198.3 278.1 336.5 976.4 

Table 6. Squared Frrchet distance based on variety means and 
among-locations variances 

(1) 
(2) 75.17 - 
(3) 110.00 261.50 - 
(4) 3,268.26 3,598.89 2,196.82 
(5) 353.66 748.37 229.96 2,664.11 

Table7. Summary of results obtained from conditional 
clustering of the data in Tables 4-6 

(a) From Table 6 

Generated subsets Probability a 

(1) {1, 2, 3, 4} 1.0 
(2) {4} 1.0 

(b) From Table 5 

(t) {1, 5} 0.25 
(2) {1,2,3,5} 0.5 
(3) {2, 3 } 0.25 
(4) {4} 1.0 

optimal solution b consists of subsets (2) and (4) 

(c) From Table 4 

(1) {1, 3} 0.5 
(2) {1, 4} 0.5 
(3) {4, 5 } 1.0 
(4) {2, 3 } 1.0 

optimal solutions b (i) subsets (1), (3), (4). 
(ii) subsets (2), (3), (4). 

(both optimal solutions generate the same musters, namely, {1, 
2,3}, {4,5} 

(d) From Tables 4 and 6 simultaneously 

(1) {1, 3 } 1.0 
(2) {2, 3 } 1.0 
(3) {4 } 1.0 
(4) {5 } 1.0 

All four subsets required to cover the varieties 
There are three musters: {1, 2, 3 }, {4 }, {5 } 

" Maximum entropy estimates; see Letkovitch (1982) 
b Solutions which maximise the joint probability of the chosen 
subsets 

firmed by the results of  a conditional clustering 
(Lefkovitch 1982) o f  each set alone of  the distances 
which are the square roots o f  the values in Tables 4-6.  
Table 7, where a summary of  the results is given, shows 
that pattern without variance associates two varieties 
which show the highest and lowest among-locations 
variance (Table 2). It is easy to see that the grouping 
obtained, corresponding to Tables 5 and 6, can be 
inferred almost by inspection of  the among-locations 
variances in Table2. A simultaneous conditional 
clustering using the Frrchet  distances of  Table 6 and 
the pattern distances of  Table 4 yielded 4 distinct 
subsets (Table 7 d) in which each of  'Trebi' and 'Peat- 
land' are single-object subsets, and two overlapping 
subsets, namely, {'Manchuria' ,  'Velvet'} and {'Svansota', 
'Velvet'}, forming a three-object muster {'Manchuria' ,  
'Velvet', 'Svansota'}. This solution, hinted at by com- 
bining the separate analyses of  the data o f  Tables 4 and 
6 separately, seems to be the most suitable for these 



Table 8. Analysis of variance for the data of Table 2 with and 
without variety groupings suggested by the simultaneous 
clustering based on the Frrchet and pattern distances, together 
with a decomposition of the residuals 

Source DF SS % 

Varieties (V) 4 17.15 
Groupings (G) 2 15.88 
Within group 1 2 1.27 

Locations (L) 5 68.53 

Residual V.L 20 14.31 
(a) Without grouping 

Singular vectors 
1st 4 9.37 
2nd 5 2.96 
3rd 5 1.86 
4th 5 0.12 

(b) With grouping 
G.L 10 11.72 
W.G.L 10 2.59 

Singular vectors 
1st 5 2.13 
2nd 5 0.46 

Total 29 i00 (actual 
value 
61927.8) 

data. Table 8 gives an analysis o f  variance for the three- 
group arrangement from which it can be seen that the 
variety groupings absorb over 90% of  the sums of  
squares estimated for differences among the varieties. 
The sum of  squares associated with the entry W.G.L in 
Table 8 was further analyzed by a decomposition o f  the 
5 x 6  array o f  residuals (Snee 1982); the rank of  this 
array, which is confined to group 1 containing three 
varieties, cannot exceed 2. The actual sum o f  squares 
for W.G.L is 1,606.85; the squared singular values are 
1,321.12 and 285.73; the singular vector associated with 
the larger o f  these is the contrast [0.754-0.648-0.106] 
corresponding to 'Manchuria ' ,  'Svansota '  and 'Velvet', 
which suggests that 'Velvet' is intermediate between the 
other two (note that conditional clustering placed 
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Velvet in the intersection o f  the multi-object subsets) 
and also that 'Manchuria '  is perhaps somewhat dif- 
ferent from the other pair. The 'Bartlett '  test for the 
equality o f  these two squared singular values gives a 
value o f  4.16, which as a chi-square with 5 d f  is not 
significant. By contrast, a similar decomposition of  the 
residuals without any grouping of  the varieties (Table 8) 
gave a value of  56.57 which as a chi-square with 9 d f  
clearly indicates heterogeneity in the interaction struc- 
ture. 
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